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Abstract: - The Autonomous Nervous System (ANS) sympathovagal balance was studied using several features 

derived from Heart Rate Variability signals (HRV). The HRV signals are, however naturally, non-stationary 

since their statistical properties vary under time transition.  A useful approach to quantifying them is, therefore, 

to consider them as consisting of some intervals that are themselves stationary.  To obtain the latter, we have 

applied the so called the KS-segmentation algorithm which is an approach deduced from the Kolmogorov-

Smirnov (KS) statistics. To determine, accurately, these features, we have used the ReliefF algorithm which is 

one of the most successful strategies in feature selection; this step allows us to select the most relevant 

features from thirty three features at the beginning. As result the ratio between LF and HF band powers of HRV 

signal, the Standard Deviation of RR intervals (SDNN), and Detrended Fluctuation Analysis with Short term 

slope (DFA α1), are more accurate for each stationary segment, and present the best results comparing with 

other features for the classification of the three stages of stress in real world driving tasks (Low, Medium and 

High stress). 
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1 Introduction 
It  is  well  established  by  many  studies  that  

heartbeat  can  evaluate  the  autonomic  nervous  

system  (ANS) [1, 2, 3]. The latter has become 

increasingly  popular  because  information  on  the  

behavior  of  the  autonomic  nervous  system  

(ANS)  can  be noninvasively inferred using 

relatively simple signal processing methods [1]. A 

stress; emotional or mental, may lead to an increase 

in sympathetic activity and a decrease  in 

parasympathetic activity  of the  ANS [4]  which 

are, respectively, shown by energy concentration 

peaks in low frequency (0.04 to 0.15 Hz) and high 

frequency (0.15 to 0.4 Hz) ranges in the HRV power 

spectral density (PSD) curve [5]. This results in 

increased strain on the heart as well as on the 

immune and hormonal systems which influence the 

activity and balance of the autonomic nervous 

system (ANS).  Many  data,  obtained  in  different  

experimental  conditions  involving  human  studies,  

have  been gathered [6] to validate the following 

three main assumptions:  

a) The respiratory rhythm of heart rate variability 

(HF) is a marker of vagal modulation. 

b) The rhythm corresponding to vasomotor waves 

and present in heart rhythm and arterial pressure 

variability (LF) is a marker of sympathetic 

modulation of, respectively, heart rhythm and 

vasomotion, and c) The ratio LF/HF is a marker of 

the state of the sympathovagal balance modulating 

sinus node pacemaker activity [7,8,23].  

To study this sympathovagal balance, Fourier 

transform is, usually, used in spectral analysis to 

compute the power spectral density (PSD) of the 

HRV [9, 10], but it does not depend on time; hence 

there is a lack of information such as the time when  
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the sympathetic or the parasympathetic activity is 

dominant, as well as how long this dominance lasts 

during the test period. This is, particularly, 

important when different events affecting the ANS 

are taking place and we need to link them to the 

(ANS) activities. The mathematical tools such as the 

short time Fourier transform (STFT) [16] or the 

wavelet transform that take into account both 

frequency and time are, therefore, welcomed. 

In contrast to the STFT which is a time-

frequency representation, the continuous wavelet 

transform method is a dynamical representation [11- 

15]. But there is, still, a correlation between the 

scale parameter and its corresponding frequency. 

Despite the useful results provided by these two 

methods [16, 17], difficulties, such as the scale 

range of the adequate continuous wavelet and the 

constant width of the STFT window, hampering 

their applications, are, however, met in each of 

them.  

In this work, and based on our previous work 

[22, 24], we have used a hybrid method in order to 

classify the three stages of stress in real world 

driving tasks. Features were processed using the 

Relief algorithm [31] in small stationary segments 

which were determined and detected, accurately, 

using the KS-segmentation algorithm introduced 

recently by S. Camargo et al. [18].  

 

 

2 Material and Method 
 

 

2.1 Material and data collection 
The data analyzed in this work were obtained from 

Stress Recognition in Automobile Drivers from 

PHYSIONET website [25], the driver database is 

originally collected by Healey & Picard from MIT 

Media Lab [26]. In total there are 17 available 

datasets, but according to Yong et.al [27], it was 

found that amongst the 17 data sets, only 7 

drives datasets (drivers 6, 7, 8, 10, 11, 12, and 

15) have clear mark identification and they can 

be used in our analysis.  
This database contains a collection of 

multiparameter recordings from healthy volunteers, 

taken while they were driving on a prescribed route 

including city streets and highways in and around 

Boston, Massachusetts. The objective of the study 

for which these data were collected was to 

investigate the feasibility of automated recognition 

of stress on the basis of the recorded signals, which 

include ECG, EMG, GSR measured on the hand and 

foot, and respiration[25].  

From the duration of different driving segment 

obtained from Table.1, it was validated that the rest, 

highway, and city driving periods produce the low, 

medium, and high levels of stress, respectively [26]. 

The driver database lacks the information 

regarding the duration of each Rest, City and 

Highway driving task, but the same durations were 

mentioned in [31]. The time intervals of the 7 

drivers used in this study (drivers 6, 7, 8, 10, 11, 12, 

and 15) are given in Table.1.  

In this study seven ECG records were used to 

test the algorithm.  These recordings were sampled 

at 496 Hz with a 16-bit rate resolution. Lead II from 

each record is used here. No episodes have been 

excluded from our analysis. 

Band pass filtering is an essential first stage of 

any QRS detection algorithm. The purpose of band 

pass filtering is to remove the baseline wander and  

high  frequencies  which  do  not  contribute  to 

QRS  complexes  detection.  In this research, a band 

pass linear phase FIR digital filter with a Hamming 

window in the frequency range between 3 and 40 

Hz is used [28]. 

 

 
  Table.1. Time intervals of driving test. 

Drive No Driving period Total rec. 

time (mn) Initiale Rest City1 Highway1 City2 Highway2 City3 Final Rest 

Driver6 15.05 14.49 7.32 6.53 7.64 12.29 15.05 78.38 

Driver7 15.04 16.23 10.96 9.83 7.64 10.15 15.03 84.87 

Driver8 15 12.31 7.23 9.51 7.64 13.43 15.07 80.19 

Driver10 15.04 15.3 8.66 5.27 7.04 12.06 14.79 78.15 

Driver11 15.02 15.81 7.43 7.15 6.96 11.72 14.99 79.08 

Driver12 15.01 13.41 7.56 6.5 8.06 11.68 15.01 77.23 

Driver15 15 12.54 7.24 5.99 6.82 12.12 15 74.7 
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The extraction of R-peaks and correction of 

artifacts from digitized ECG data were performed 

using ARTiiFACT [29], which is a software tool 

providing an efficient artifact detection algorithm. 

All extracted features of HRV signals were 

calculated using the Kubios HRV Analysis 2.0 

software [30]. The program calculates all the 

commonly used time and frequency domain 

parameters and the nonlinear Poincare plot. 

Advanced spectrum estimation methods and 

detrendingoptions are included as well. All records 

were processed using MATLAB (R2012a 

7.14.0.739). 

 

 

2.2 Hybrid method for studying the ANS 

activity  
The suggested hybrid method to classify stress in 

order to study the ANS balance can be described by 

the following steps: 

 

1-The ECG signal is preprocessed using band-pass 

filter; later ARTiiFACT tool is used on filtered 

ECG signal to enhance the presence of QRS 

complexes and to detect R-Peaks and finally the   

HRV signals are calculated. 

2-Segment each HRV signals into stationary 

patches by applying the KS-segmentation 

algorithm. 

3-Compute 33 features in each stationary segment 

of the temporal signals using Kubios HRV Analysis 

Software. Table.2 presents a detailed description of 

all features. 

4- The next step is to calculate and extract the most 

relevant features; we have used the ReliefF 

algorithm, this algorithm try to find features that 

help separate data of different classes. If a feature 

has no effect on class-based separation, it can be 

removed.  

These main steps of this suggested hybrid 

method are depicted in the following diagram in 

Fig.1. 

Table.2. Description of the 33 extracted features. 
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Features Units Description 

Mean RR [ms] The mean of RR intervals 

STD RR (SDNN) [ms] Standard deviation of RR intervals 

Mean HR [1/min] The mean heart rate 

STD HR [1/min] Standard deviation of intantaneous HR values 

RMSSD [ms] Square root of the mean squared differences 

between successive RR intervals 

NN50  Number of successive RR interval pairs 

that differ more than 50 ms 

pNN50 [%] NN50 divided by the total number of RR intervals 

HRV triangular 

index 

 The integral of the RR interval histogram 

Divided by the height of the histogram 

TINN [ms] Baseline width of the RR interval histogram 

F
re

q
u
en

cy
 

D
o
m

ai
n
 

Peak frequency [Hz] VLF, LF, and HF band peak frequencies 

Absolute power [ms
2
 ] Absolute powers of VLF, LF, and HF bands 

Relative power [%] Relative powers of VLF, LF, and HF bands 

Normalized power [n.u.] Powers of LF and HF bands in normalized units 

LF/HF  Ratio between LF and HF band powers 

N
o

n
li

n
ea

r 

SD1, SD2 [ms] The standard deviation of the Poincare plot perpendicular to 

(SD1) and along (SD2) th line-of-identity 

ApEn  Approximate entropy 

SampEn  Sample entropy 

D2  Correlation dimension 

DFA α1  Detrended fluctuation analysis with Short term slope 

DFA α2  Detrended fluctuation analysis with Long term slope 

RPA Lmean [beats] Recurrence plot analysis of Mean line length 

RPA Lmax [beats] Recurrence plot analysis of Maximum line length 

RPA REC [%] Recurrence plot analysis of Recurrence rate 

RPA DET [%] Recurrence plot analysis of Determinism 

RPA ShanEn  Recurrence plot analysis of Shannon entropy 
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Fig.1 The flow chart of the proposed hybrid 

method. 

 

 

3 Results and Discussion 
The aim of a heart rhythm representation is to 

provide a signal that should accurately reflect 

variations in the heart rhythm behavior, and which 

should lend itself to much kind of processing. An 

example of such HRV variation in time is depicted 

in Fig.2. The heart rhythm is, usually, represented 

in terms of rate which is given by the inverse of the 

RR inter beat intervals. The variation of this inverse 

in time, represents, thus, the HRV signal. 

The goal of our method, to study the ANS, is to 

use features from HRV signals to detect stress of 

automobile driver’s, HRV analysis is commonly 

used as a quantitative marker depicting the activity 

of ANS that may be related to mental stress [32].  

 Fig.2 Cardiac interbeat (RR) interval time series. 

 

The RR interval signal is usually interpolated to 

recover an evenly sampled signal.  Cubic 

interpolation is adopted and the resampling 

frequency of the interpolated signal is Fs=4Hz [21]. 

As mentioned above in the introduction, the 

sympathetic and the parasympathetic activities of 

the ANS are empirically situated in low frequency 

(LF) and high frequency (HF) ranges, respectively 

in the Fourier space [22]. When these activities are 

taking place, the HRV power spectral density curve 

shows large concentration of energy in these 

frequency ranges, and the sympathovagal balance 

is, usually, estimated using the PSD in the LF to 

that in the HF ratio (LF/HF). So, in addition of this 

PSD ratio, we have computed 32 other features to 

track the evolution of the ANS behavior as well as 

the localization in time of its activities. 

 In order to compute, accurately, this features, 

first, we have to segment these  HRV signals  into  

stationary  segments,  since  any  signal  is  thought  

of  as  being  composed  of  small stationary 

segments. To identify accurately the latter, many 

algorithms, such as those based on Student’s t 

statistic [29], have been proposed, but they present 

some difficulties in determining, accurately, the 

stationary segments. S. Camargo et al [18] have, 

recently, introduced an algorithm named K-S 

segmentation algorithm to determine more 

accurately  the  stationary  segments  for  a  given  

signal  using  an  approach  based  on  

Kolmogorov-Smirnov  (KS) statistic.  It should be 

noted that the KS-segmentation algorithm which is 

described in (Fig.3) is different from the KS 

statistic. More details about this segmentation 

algorithm can be found in S Camargo et al work 

[18].   

 

 

 

Input ECG  

Records Fs=496 Hz 

Segmentation of 

Stationary fragments 

With KS-Algorithm 

(ρ=0.05, 3000 l ) 

Compute 33 features for all stationary 

segments  

 

 

 

FIR Filter 

3-40 Hz 

R-Peak Detection 

Correct artifacts 

RR signal 

interpolated with 

Fs=4Hz 

Select the most relevant 3 

features  
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Fig.3 The KS-Segmentation algorithm 

 

To obtain  a  more  accurate  segmentation  of  the  

HRV  temporal  signals  into  stationary patches,  

we  have chosen to work with: 

 

 
Fig.4 Part from temporal HRV signal for 

driver06, the stationary segments obtained using 

the KS-segmentation algorithm are delimited by the 

vertical lines. 

 

-A minimal stationary segment length or 

number of points 𝐿0 = 720 (3mn), to distinguish 

between the three main spectral components [1],     

( as  a  result,  the  lowest frequency  that  can  be  

resolved  is  1/180≈0.0055Hz, just above the lower 

limit of the VLF region). 

 -A statistical  significance  level 𝑃0 = 0.99  

considered  as  an  acceptable  and  standard  level  

for  this  kind  of distribution test [18], is illustrated 

in (Fig.4) for the Driver 06 as an example. The 

vertical discontinuous lines shown in this figure 

delimit these stationary segments obtained by the 

KS-segmentation algorithm. 

Once these stationary patches have been 

obtained, all features will be computed using 

Kubios HRV Analysis Software, for each stationary 

segment i of the HRV signals.  

For thre feature selection ReliefF algorithm is 

context sensitive, robust, and can deal with datasets 

with highly interdependent features, with 

incomplete and noisy data and can be used for 

evaluating the feature quality in multi-class 

problems. Instead of n nearest hits and misses, 

ReliefF searches for n nearest instances from each 

class. The contributions of different classes are 

weighted with their prior probabilities. For a more 

thorough overview of feature quality measures, see 

[31]. The description of the Algorithm is provided 

in the Fig.5. Initial values are: 

-M learning instances xk (N features and C 

classes); 

-Probabilities of classes py; Sampling parameter 

m; 

-Number n of nearest instances from each class; 

Start 

Initial value 

𝑥𝑖 (i=1…N): time series 

𝛼0: Significance level 

𝑙0: Minimal size 

𝑆1=1       the two sides index 

𝑆2=N       of the initial segment 

 

 For p=S1 S2-1 compute: 

*D (p): KS statistic between the two 

fragments 𝑥𝐿[𝑥𝑠1,.. 𝑥𝑝] and 

𝑥𝑅[𝑥𝑝+1,.. 𝑥𝑠2] 

*𝛼 (p): statistical significance  

 
Find the index n of the  

Maximum distance 𝐷𝑀𝑎𝑥(n) 

 
Check these conditions: 

1) 𝛼(n)>= 𝛼0 

2) n-𝑆1+1, 𝑆2-n>=𝑙0 

* Acceptance of the cut  

* The segment which is        

on the left of the pointer will 

be analyzed 

* S2 will be changed 

Check  

S2=N 

 

YES NO 

YES 

NO 

*The next segment not analyzed 

on the right of S2 will be 

analyzed 

*S2 & S1 will be changed END 
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Fig.8 ReliefF Algorithm. 

 

For output value, each feature Fi a quality weight  

− 1 ≤ W [i] ≤ 1; 

Quality estimations W can also be negative, 

however, W [Fi] ≤ 0 means that feature Fi is 

irrelevant. 

We have divided the whole driving time into 7 

periods according to the Table.1, with respect to 

different stress class values drivers, each period has 

at least one stationary segments. 

These 33 features were used to create a single 

vector representing each of the segments used in 

the feature analysis. A total of 83 segments were 

extracted from the 7 drivers: 28 from rest periods, 

27 from highway driving, and 28 from city driving. 

The resulting 83 feature vectors were then used 

with target values taken from Table.1, for the 

selection of the best relevant features. 

We have calculated the weights of 33 features 

for all 7 drivers, and to get a good idea we have 

calculated the sum of the weights for all features. 

To better observe the values we have multiplied all 

the values by 100, so this is a percentage                

(-100 ≤ W [i] ≤ 100). All results are shown in 

Table.3, Table.4, and Table.5. 
 

 

Table.3 The percentage of feature weights in Time Domain 
Features Driver6 Driver7 Driver8 Driver10 Driver11 Driver12 Driver15 Total 

Mean RR 
5,4265141 0,94608789 2,15877276 -0,3673764 7,08424454 2,06492077 3,82870738 21,141871 

STD RR (SDNN) 
-1,12031473 5,30112026 3,64183896 12,4138418 1,41023324 1,36558239 6,36862085 29,3809227 

Mean HR 
5,04576079 1,48723939 2,18555675 -0,1654806 7,43518712 5,80068335 4,02173856 25,8106854 

STD HR 
0,64459831 4,03596799 3,00599826 5,48175498 0,99390922 2,48964014 7,08112023 23,7329891 

RMSSD 
4,43330983 5,27276105 4,63776719 3,60629526 2,4912859 1,3390948 -0,6543828 21,1261312 

NN50 
4,93499129 3,75716757 5,89490642 4,09302749 2,42414003 -1,1514342 -1,1191262 18,8336723 

pNN50 

4,1131347 5,2578275 5,70706436 

-

2,49139871 7,06734887 

-

2,09602672 1,00740149 18,5653515 

HRV triangular 

index 

3,98374543 8,66282 1,17147445 3,79857956 2,9558076 2,54509804 4,03950875 27,1570338 

TINN 
-0,50005994 3,94967263 2,98269825 7,31407287 3,10674207 3,03159291 5,41442861 25,2991474 

 

Table.4 The percentage of feature weights in Frequency Domain 
Features Driver6 Driver7 Driver8 Driver10 Driver11 Driver12 Driver15 Total 

Peak VLF -1,870995 -0,240218 -0,501896 -4,6579505 -1,4490866 5,25749220 -1,97545442 -5,438110603 

Peak LF -1,455172 3,2278905 -0,101692 -6,6279138 -0,8270396 6,11780911 0,33046205 0,664342529 

Peak HF 9,7373692 2,8587799 1,250429 27,686010 2,0393704 1,55724029 -2,43878988 42,69041027 

Absolute power VLF -0,043268 1,8839376 3,3143432 -2,4180459 2,6976153 -1,4494387 7,43173916 11,41688249 

Absolute power LF 0,6045780 4,7026317 2,6913606 12,1786356 1,6473066 -2,2639601 0,15869727 19,71924984 

Absolute power HF 5,9716729 2,9236121 6,7313311 5,95757061 6,68760858 -1,2680803 1,55811979 28,56183483 

Relative power VLF 4,0004530 3,4704776 5,1832699 -5,7655098 3,8176044 -2,3362531 3,41283561 11,78287771 

Relative power LF 1,3066848 4,5676953 0,8556610 3,5804381 -0,0989818 -0,3357334 0,92373378 10,79949792 

Relative power HF 4,3671313 -3,404726 6,4272542 7,72285027 5,6769006 5,29946549 6,28937362 32,37824898 

Normalized power LF 1,6750151 2,7055632 3,7379327 9,11338152 4,34139307 14,0069736 3,75061345 39,33087282 

Normalized power HF 2,1862527 1,8313037 5,2671011 11,3037182 5,53590517 7,75041689 7,03267480 40,90737281 

LF/HF 2,1862527 1,8313037 5,2745638 11,3037182 5,53590517 7,75041689 7,03267480 40,91483546 
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Table.5 The percentage of feature weights in Nonlinear measures 
Features Driver6 Driver7 Driver8 Driver10 Driver11 Driver12 Driver15 Total 

SD1 4,481071723 5,265676992 4,625379042 3,590119996 5,908918707 1,270657762 -0,63200023 24,50982399 

SD2 -0,89913093 5,155896285 3,949342831 12,30070408 1,299309636 1,740719033 6,916938265 30,4637792 

RPA 
Lmean 

1,130658558 1,487489835 1,559821106 -5,17918950 1,18132893 5,403955316 0,010057975 5,594122218 

RPA 

Lmax 

1,897946925 1,75672714 4,240080664 -2,51557777 2,330251115 7,531546255 2,820652947 18,06162727 

RPA REC 5,285340028 2,39446695 2,990843723 -4,00252028 2,33608176 3,493944552 4,860862169 17,3590189 

RPA DET 8,336087485 2,357117419 1,297534119 2,076421438 3,749714864 2,896763256 6,060281398 26,77391998 

RPA 

ShanEn 

4,45967594 1,406204097 0,885551438 -2,86795753 2,450600875 4,312108289 2,26727989 12,913463 

ApEn 2,65257873 4,343730032 4,2239E-16 -7,35371131 1,078834562 8,666119087 1,96788185 11,35543294 

SampEn 3,302008024 4,215304831 0,489753063 4,950714233 2,078023777 4,666590115 -1,21892079 18,48347325 

DFA α1 2,596206618 1,329679378 4,468054587 10,33841569 6,569025917 0,610299735 7,625394253 33,53707618 

DFA α2 4,827956397 6,17605819 3,694075334 -7,99819723 2,255482084 -2,11124932 5,513654621 12,35778007 

D2 6,301947561 -0,91726545 0,283827833 -6,39944059 -1,81097229 6,043045703 0,313220789 3,814363548 

 

Comparing between all the results In these three 

tables we can see that there are some features are 

relevant and we can easily see the difference, in the 

time domain features Standard deviation of RR 

intervals present the most relevant feature for the 

distinction between the three stress stages, 

following by The integral of the RR interval 

histogram divided by the height of the histogram 

(HRV triangular index). 

In the Frequency domain there are 4 relevant 

features can be used in stress detection, they are:  

Ratio between LF and HF band powers, Powers of 

LF and HF bands in normalized units and HF band 

peak frequencies. 

In Nonlinear measures it is obvious that 

Detrended fluctuation analysis with Short term 

slope present the best choice to classify stress in 

similar situations. 

 

 

4 Conclusion 
The suggested hybrid method based on the KS-

segmentation algorithm, to determine the stationary 

segments, as well as the application of the ReliefF 

algorithm for the feature selection to study the 

HRV evolution  in  time,  seems  to  be  simple,  

more  accurate  and  easy  to  implement.  

According to our results using the proposed hybrid 

method, it is possible to confine the correlation 

between the LF/HF ratio and sympathovagal 

balance during stress period. Also we can propose 

in feature work study in more details relation 

between stress and some nonlinear measures as    

for example Detrended fluctuation with Short term 

slope for the good results obtained. This study may 

help in linking the ANS behavior to the 

corresponding stress situation. 
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